

Pulsed Synchrotrons for Very Rapid Acceleration

J. Scott Berg and Holger Witte Brookhaven National Laboratory Advanced Accelerator Concepts Workshop 17 July 2014

Outline

- Introduction
- Lattice
- Magnet design
 - Goals
 - Iron properties
 - Latest design
 - Computation challenges
- Conclusions

Ordinary Synchrotrons

- Accelerating in an ordinary synchrotron
 - All magnetic fields increase in proportion to particle momentum
 - Closed orbit, tunes identical at every energy
 - Acceleration is sufficiently slow that either
 - The RF frequency can be adjusted as the time of flight varies, or
 - The beam adiabatically tracks the RF bucket center
 - Eddy current effects and losses (in magnet, coils, vacuum chamber) can usually be neglected

Rapidly Pulsed Synchrotrons

- Here we discuss rapidly pulsed synchrotrons
 - Cases where you are in a hurry to accelerate
 - Unstable particles, for instance
 - Requires high gradient (and therefore high frequency) RF
 - Time of flight varies more quickly than you can adjust the RF frequency. Beam will not adiabatically track the RF bucket center.
 - Eddy currents and losses are potentially significant
 - Losses in coils driving magnet
 - Additional losses in iron
 - Drive eddy currents in vacuum chamber

Hybrid Synchrotrons

- Field of pulsed magnets must be generated by iron
 - Too much stored energy if you use high field superconducting
- Limits bending field to roughly 2 T
- Would like a higher average bend field
 - More compact machine: important for both very high energies and machines for applications
 - When time is limited: need more RF for a longer ring
- Interleave superconducting fixed-field and bipolar pulsed dipoles
- Acts like a dipole with average field $(B_C L_C + B_W L_W)/(L_C + L_W)$

Hybrid Synchrotrons

• Beam will not remain centered in magnets

History

- First proposed by Summers in 1996
 - Subsequently discussed for other high energy accelerators
- Garren & Berg produced a lattice design in 2011, but with some items still to be addressed
- Summers built and tested magnets in 2012, demonstrating achieved field
- Witte created a dual-material dipole design in 2012

Hybrid Synchrotrons

• Given a desired acceleration rate:

$$L \propto \frac{p_{\text{max}}(B_C + B_W) - p_{\text{min}}(B_C - B_W)}{B_C B_W} \qquad n \propto L^{-1}$$

- Can get large momentum range, but most of ring dipoles are pulsed. Results in long ring.
- Reduce footprint with smaller momentum range, greater fraction of cold dipoles
 - Requires more stages; can potentially share tunnel
- High dipole fields important, particularly pulsed dipoles

Time of Flight Correction

- Time of flight varies with momentum
 - Not just velocity: beam motion in dipoles
- Insufficient time to re-phase RF
- Must correct time of flight
- Closed orbit will move off-axis in quadrupoles, sextupoles
 - Reduces average bend field
 - Can arrange dipoles relative to quads so that quads help bending
- Tighter interleaving of dipoles helps
 - Also reduces magnet aperture, power required
 - Inter-magnet spacing reduces efficiency

Muon Collider Example

• Magnets: 10 T fixed, 1.5 T pulsed

Hybrid	p_{\min}	p_{\max}	Time	Turns
	GeV/c	GeV/c	ms	
No	63	375	0.3	10
Yes	63	173	0.1	18
Yes	173	375	0.2	18
Yes	375	750	0.4	18
Yes	750	1500	0.8	18

Pulsed Synchroton: Lattice Design

- Interleaved arc cells and linacs
- Maintain constant tune through acceleration
- Zero dispersion in linacs
- Correct global chromaticity (collective effects)
- Maintain high synchrotron tune (collective effects)
- Reduce beam excursion
- Have sufficient longitudinal acceptance
- Have sufficient accelerating gradient
 - Energy is discrete, magnet fields are continuous
 - Matches, tunes, etc. will not be exact
 - Want as many acceleration steps as is reasonable
 - Compact arc cells

Pulsed Synchrotron: Arc Cell

- Unit cell with arc and linac
- Minimum amount of bend per cell to create
 - First-order achromat
 - Cancellation of sextupole geometric nonlinearities
- Arc is 2π achromat with four $\pi/2$ FODO cells
 - D quads on ends to minimize horizontal orbit excursion
 - 3 sextuple families to correct
 - Chromaticity for full cell
 - Second-order dispersion
- Linac has 3 internal quads, different from arc quads
 - Permits variation of cell tune

Magnet Design Principles

- Want high field
- Pulsed, so need to watch losses: iron and coils
- Coil losses: I^2R and eddy current
 - Reduce I^2R losses: distribute current over a larger area
 - Longitudinally transpose cable strands
- Three types of losses in iron
 - Hysteresis: per pulse, only a weak function of frequency
 - Can also get worse with very thin laminates
 - Eddy currents:
 - Better with higher resistivity
 - Increases with frequency
 - Better with thinner laminates
 - Excess losses: eddy currents at grain boundaries?

Hysteresis Curves

Arnold Magnetic Technologies, grain oriented steel sheets

Iron Parameters

Material	Resistivity	Dipole Field
	$\mu\Omega$ cm	T
Pure Iron	10	1.75
3.5% Si Steel	40	1.55
3.5% Si Steel, GO	50	1.8
6.5% Si Steel	82	1.4
Fe-Co	44	2.0

Material Choice

- Fe-Co is great, but Co activation a concern (but possibly manageable)
- Grain oriented steel almost as good, but
 - Field quality issues, since field lines pinned along grains
 - Assembly and stamping tolerances
 - Systematic variations in material properties
 - Simulations don't converge for the nonlinear case, so no way to compute requirements
 - But recent positive results (WG2 talk, B. Cowan, Tech-X)
 - Unclear how to obtain permeability tensor needed for simulations

Material Choice

- Pure iron good field, but low resistivity: potentially high losses
 - Good material (VACOFER S1) only at largish thicknesses (200 μ m), more eddy current losses
- 6.5% Si steel very low losses, but lower field
- 3.5% Si steel a good compromise, the usual choice
- We propose a hybrid design
 - Pole in 3.5% Si steel for higher field
 - Back yoke in 6.5% Si steel for low losses

Updated Magnet Design

- Changed geometry to reduce eddy current losses
- Stray field primarily from gap
- Long edge of coil apprximately parallel to field lines
- Reduces peak current density

Updated Magnet Design

Overall Losses

- Losses dominated by pole
- 6.5% Si steel significantly reduces back yoke losses
- Eddy current losses in coil even smaller
 - Could be reduced further by transposing cable strands

Magnets: Computational Challenges

- Mostly centered around nonlinear B-H curves and poor convergence
 - Any simulation of grain oriented steel
 - Hysteresis simulations of non-oriented steel when going into saturation. Would probably drive into saturation to get linear rise when operating
- Size of problem when going into three dimensions
 - End effects
 - Longitudinal transposition of cable strands

Magnets: Computational Challenges

- Importance of computations
 - Designing for field quality while pushing field limits
 - Having a reasonable estimate of power losses
 - Linearity of drive-to-field response
- Having correct response curves for materials needed as input
 - Our concerns are different from usual high-frequency iron users
 - They care mostly about power, we care about field strength and details of the field distribution at high field
 - We would like to do a cost-benefit analysis for some interesting materials (e.g., high-purity iron)

Conclusions

- Hybrid pulsed synchrotrons allow rapid, efficient acceleration with a relatively compact machine
- Beams moving far off-axis as fields vary is a unique lattice design process
- High field and low losses are key criteria for magnet designs
- Have pulsed dipole designs with manageable losses
- Understanding iron properties is important for optimizing magnet designs
- Some questions we have expose limitations in magnetic simultaion codes

Future Directions

- Picking lattice parameters for a muon collider acceleration chain
- Choosing a good design for time of flight correction
- Measurement of necessary properties of magnet steel
- Improving magnet simulation code behavior for nonlinear magetization curves
- Large scale simulations of some 3-D effects
- Making a first pass at a power supply design
- Studying quadrupole and sextupole designs